NATURAL OSCILLATIONS OF GAS FLOWING PAST
A LATTICE OF FLAT PLATES

V. B. Kurzin

The splicing method is used to solve the problem of natural oscillations of a gas flowing past a flat
plate lattice. In addition, the natural oscillations of a gas in an infinite plane, simulating the natural
oscillations of a gas in an annular channel, are examined under the condition of spatial periodicity.

Interest in the study of this question was kindled by the results of several studies of the oscillations
of flat plate lattices in subsonic gas flow {1-4]. In these studies it was found that for definite combinations
of the lattice and approaching stream parameters the unsteady aerodynamic characteristics of the plates
depend markedly on these parameters, With regard to physical interpretation, such phenomena have been
explained as acoustical resonance of the gas perturbations caused by vibrations of the profiles with the
natural oscillations of the gas in the lattice region in question. In this connection it has been noted that
the aerodynamic damping of the lattice vibrations is reduced significantly in the resonant regimes,

In [5] this fact was noted in a study of vibrations in axial compressors. The present paper presents
for the first time relations which define the values of the natural frequencies of gas oscillations in an
annular channe] in the circumferential direction. These same relations, but in a different form and by
different methods, have been obtained in [6, 7],

1. We shall first examine the problem of natural oscillations of gas flow in an infinite plane. The
periodic solutions of this problem will be a model of the natural oscillations of a gas in an annular channel,
The problem reduces mathematically to finding the solution, bounded over the entire plane, of the equation
for the amplitude of the unsteady component of the flow velocity potential ¢, In the x, y dimensionless
Cartesian coordinate system, referred to the characteristic length c, this equation has the form
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(1.1)
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Here w is the frequency of the gas oscillations, U is the undisturbed gas flow velocity along the x
axis, and ¢ is the sound speed in the undisturbed flow.

By rotation of the x, y axis through the angle 5, we obtain the new dimensionless coordinates £, 7

£ =z cos p — ysin B, W =axsinf + ycosp (1.2)
In this coordinate system (1.1) becomes
, % . o . o2 . B Lo D
Agp — M?2cos?B JEE M?sin? B 8—7;2 — M?sin 23 SEon (;pn —2kMjcosB % — 2kMjsin3 3(% + k=0 (1.3)

We seek the general solution of (1,3) in the class of periodic functions in the direction n with period
L, equal to the length of the circumference of the corresponding annular channel, also refrered to ¢. Then
the function ¢ is representable by the Fourier series

o= D fa(®explZ (1.4)

n=—oo
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and the particular periodic solution of (1.3) can be represented in the form
¢ =exp (A& - 2 ] L) (1.5)

Substituting (1.5) into (1.3), we obtain the characteristic equation for determining A, whose solution
has the form

. b \2 ) i (1.6)
"zn:1_M2c0525[< TV (4~ MY — 2% 2 M sing — ]

Thus the general solution of (1.3), satisfying the periodicity condition in the direction of the 7 axis,
has the form

oo

9= 2 expL¥N (4, exp (fhin -+ han) & + b exXP (Fhin — han) (1.7)

If the radicand in (1.6) for Ay, is less than or equal to zero, the corresponding term of the series (1,7)
Pn = exp [j (hn€ + 2mnm / L)] cos [Agn” (§ 4 8)]  (Ayy, = jhy,") (1.8)

where 6 is an arbitrary number, will be the eigenfunction of the problem in question. It satisfies (1,3) and
is bounded over the entire plane. Such solutions of the Helmholtz equation for an infinite plane are pre-
sented, for example, in [8].

We isolate from the solution (1.8) the factor exp (jMnf), characterizing the transport of the gas dis-
turbance by the flow in the £ direction, setting ¢, = exp(jMné)@p*. Then the function ¢n*exp(jwt) will be
the superposition of two traveling waves, propagating in directions symmetric with respect to the 7 axis.
In the limiting case, when X, = 0, the function ¢n*exp(jwt) is a traveling wave propagating only in the
direction of the 7 axis,

We introduce the notations
L = Nh, n =mN -+ m, p =2nm /N (1.9)

m=0;1,.. ,N—1; ng=0, 21, £2,...)

where N is some natural number. Then

2nn 2mn
e (1.10)
and we can note that the condition Mn = 0 coincides with the condition for acoustic resonance of the natural
oscillations of a gas in an infinite plane with disturbances caused by a pulsing dipole chain [7], arranged

along the 7 axis with the spacing h

kh . T RS T
2nn, +po= —TE [MsmB—_f—]/i——MzcosgB] (=0, +1,...) (1.11)

From the physical viewpoint this means that the dipole chain, radiating disturbances, resonates with
those natural oscillations of the gas which do not contain waves approaching the 7 axis from infinity on the
left or right.

As was noted in [2-5], the condition (1.11) also defines certain characteristics of unsteady gas flow
through a planar profile lattice. In this case the parameter h is the dimensionless lattice pitch, referred
to the profile semichord c; the parameter B is the lattice stagger angle. Like the pulsing dipole chain, the
lattice is a source of disturbance of the gas and for synchronous oscillations of its profiles with the same
amplitudes and the constant phase shift ¢ it excites the corresponding natural oscillation mode in the infinite
plane. In this case the interaction of the lattice profiles with the gasdecreases sharply, andthe aerodynamic
damping of the profile oscillations also diminishes, In terming this phenomenon for flow past lattices
acoustic resonance, we must note its arbitrariness, since the natural oscillations of the gas in the "lattice"
region in the general case do not coincide with the natural oscillations in question,

2. In the case of subsonic gas flow past a lattice of flat plates the eigenvalue problem consists in
finding the nontrivial solution of (1.3) with the condition of boundedness of the solution at infinity behind
and ahead of the lattice (Fig. 1)

@< oo for |E[— 2.1)

and with the uniform condition of gas nonpenetration through the plates
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/0y =0 for y=nhecosB
nhsinB < z < nhsin B -2 (2.2)

We consider only those flows in which there are no vortex wakes behind the
plates. We shall seek these solutions with the aid of the splicing method [9].
Following this method, we divide the flow region into the regions Dy* and Dy*
located respectively to the left and right of the lattice and bounded by lines
connecting the leading and trailing edges of the plates) and the regions Dp
(between the plates (Fig. 1)). In accordance with the periodic function concept
(1.7), in the regions D¢* and D,* the most general expression for the eigenfunctions,
with account for the substitution (1.11}, has the form

N—1 o0 .
¢ = 2 exp (iu ”T) D) exp (J'Zrm T+ hank ) [ 4 Byune 2] 2.3)
m=0 n=—00
In the following it will be shown that any unknown function in these regions is described by one of the
terms of the sum over m. Moreover, it follows from the condition (2.1), and from the condition of the
absence of waves coming from infinity, that the coefficients @mn, are zero in the region Dy* and the
coefficients by, are zero in the region D,*, Therefore we take for region Dy*

o =exp (iG] B anexp[(hun + hon) &+ j20 -] (2.4)

Nn==——00

for region Dy*

00 = exp (jp) 3 b exp [(fhn — hon) (6 — 2c05P) + 2n L] o

N=—c0 h

In (2.4) and (2.5), and also hereafter, the subscript 1 on ny in the constants %mn,> bmn, i8 dropped.

The functions @1* and ¢,* and their first derivatives will be continuous in the regions Dy* and D,*,
except for possibly the values N"=shand 7=2sin f+sh (=0, =1, + 2, ,,.) on their boundaries corres-
ponding to the coordinates of the profile edges. We know from slender wing theory that at these points the
derivative of the velocity potential function may have a singularity ofthe (r—rs)"i/ % type, where rg is the
coordinate of one of the edges ofthe s-th profile and r is the radius-vector of the variable coordinate.
However, in spite of this singularity the coefficients an' and by' of the series for the derivatives of the
functions ¢{* and @,*, analogous to the series of (2.4) and (2.5), tend to zero as n — <, namely,

h
, 2 0 .
an’ lnoo = Q[ Vn————(;,“ 5 +J‘(n)]eXP <12ﬂ3n : >dn =250 1, (n)+o(n )0

0

Here the term with the singularity from the derivatives of the functions ¢{*(0, M), @;*@2 cos 8, 1)
is separated in the form c(/VMh— 7). Consequently, the series for the first derivatives of the velocity
potential functions converge for any value of 7 except for the coordinates of the profile edges.

In the regions Dy the general expression for the eigenfunctions will be defined by the solution of
mixed problems of the form

Pn =Py * for £ =0, Pr = @* for f = 2COSﬁ

(2.6)
09, [0y =0 for y =nhcosP,y = (n+ 1) heos B

We shall seek the functions ¢p in the form of an infinite series of solutions of the equation (1.1), each
of which satisfies the nonpenetration condition, Considering that the first two conditions (2,6) for the
different regions differ only in the factor exp(jny), the general expression for the function ¢, can be
written as follows:

M=0
(2.7)

1 rf am \? Ra KM
hn = 137 I_<h 058/ ““Mz)“kz:[ , = T=p
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We shall determine the constants ay, by of the functions (2.4) and (2.5)

7dr- T and also the constants ¢y, and dm of the function (2.7) in accordance with the
2 | M= /y o splicing method from the condition of continuity of the unknown function and
' ‘ ez its normal derivative on the lines £ = 0 and £ = 2 cos B, except possibly the
ot ‘ =~ points corresponding to the coordinates of the profile edges. In so doing the
, ! first two conditions (2.6) for the function (2.7) are automatically satisfied,
a9 08 1z 16 We note that it suffices to splice the functions (2.4) and 2.,5) with the
Fig, 2 function (2.7) only in the interval of a single step h. On the remaining segments

of the lines £ = 0 and & = 2 cos f splicing is accomplished by virtue of the
periodicity condition, Since the expressions (2.4) and (2.5) in the interval of a single step describe an
arbitrary function of the sought solution, we can state that summation over the index m in (2.3) does not
yield a more general representation of the sought solution and can be dropped.

Thus, equating the functions (2.4) and (2.5) and their derivatives in the £ direction to the function
(2.7) and its derivative on the lines £ = 0 and £ = 2 cos f respectively, we obtain four relations which
connect the unknown constants.

For the sake of brevity we write out only the two of these relations which satisfy the continuity
conditions on the line £ = 0:

exp L S g exp

N=—00 m==0

©o
7231'"! = N [ mSmED g rpnsing) onsing oo m’?n

(o]

expiL 3 ay (fhun + han) exp Z5 = 3 8 Lo0s B [ (o -+ J0) €D - dip (— A o) ] (2.8)
me=0

R==—00

X oS nmn + —tg B epemMSINED 4 g o ~rpmnsiBygin 1"”‘}

To find the unknown constants, we transfer from the system (2.8) to an infinite system of algebraic
equations. To do this we multiply these relations on the left and right by the function exp [—j@m + ) X
n/hlfn =0, 1, 2, .. .) and integrate over 7 from 0 to h. Then we have

)
an = Z [cme-ﬂm Apm + ABam ]

m=0

™ 2.9)
(Mn + Mn) @, = 2 { [(hm +-jo)cosB — Mt—g—@] Ay +4d, [(—— Am -+ jo) cos B — nm) ‘g B] Bnm}
m=o
Here o - o v

Aom = g e [(— 1) X (Oun) — 41 , Brum = 5w [ (— )™ 3P (8n”) — 1]
Onm’ =Jj(chsinB —2nn — p) + A ksinB. 6,," =j(chsinB — 2nn — p) — A hsin

The constants apare easily excluded from each pair of the system (2,9). Performing similar
operations for the relations satisfying the continuity conditions on the line £ = 2 cos B, we obtain the system
of equations for determining the unknown constants cy, and dpy, in the form

3 {em [c08 (hm +-J0) — TREE — (fhan )| A

m=p

o+ A 058 (— A+ 16) — HEE — (jhan +- B B = 0
) (2.10)
2\ {em [c08B (ks +- 0) — LGEE — (jhan — han) | A

m=0
+ d 008 B (— +ja)_(ﬂzg)nnt1g’,3_ (an — )] B} =0

n=0, %1, %2,...)

Since (2.10) will be homogeneous, existence of its nontrivial solution is possible only if the deter-
minant composed of the coefficients of the unknown constants equals zero. Thus, the problem in question
is reduced to the determination of the eigenvalues of the infinite system of algebraic equations (2,10).
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We note that the approximate values of the eigenvalues of (2,10) can be
found with prespecified accuracy from the truncated system, i.e,, for its
solution by the method of reduction. However, even this problem presents
considerable computational difficulty in the general case. As an illustration
we analyze the natural oscillations of the gas in a lattice region using the very
simple example of flow through an unstaggered lattice,

J.J

X 3. In the case of an unstaggered lattice (8 = 0) the infinite system of
¥ algebraic equations simplifies considerably, In fact, for § = 0 the coefficients
AT Apm = Bom, fnm' = fnm", ¢ = Am, and the system of equations (2,10) takes
1Ny the form
15 oo
) 4 ok S lem (n— R € = m (et Rgp)] A =0,

Fig. 3 m0

m

S Lo (s 4 Ry — i (o — ) €75 Ay = 0

m=0

_———-7“—{:

2.4

(n=0, *1, 42...)

Hence ¢m = dim and (2,10) thereby becomes

3! e lhm A by — € M (o — )] A =0 (n=0,1,2...) 3.1)
m==0
We first of all note that for ¥ = 0 the coefficients Apm = 0 if m = 2n., But since My = M\n for m = 2n,
it follows from (3.1) that all the constants ¢y and dyy,, and therefore ay and by as well, are zero in this
case, Thus, for i = 0 there is no nontrivial solution of (3.1). It is further not difficult to note that if the
quantity Ay, vanishes for some fixed value of m two columns of the system determinant coincide.

Thus, the condition Ay = 0 defines the combination of parameters
k:“T"‘ Vi—M: (m=1,2,...) (3.2)

for which the gas flowing over the unstaggered lattice can perform natural oscillations. The eigenfunctions
of (1.1) corresponding to these oscillations have the form

= oxp (joz) cos (mmy / h) (3.3)

We note that (3.2) coincides with (1.11) for 8= 0 and U = 7, i.e., in this particular case the natural

oscillations of the gas in the lattice region coincide with the natural oscillations of the gas in an infinite
plane,

In this case of forced vibrations of a lattice with a frequency satisfying the condition (3.2), the
vibration period is a multiple of the time after which a disturbance wave from some point of the profile
reaches the corresponding point of the neighboring profile and after reflection returns to the original
point. If in this case the vibrations of the neighboring profiles are performed in phase opposition, then
the disturbances caused by each of the profiles combine and acoustic resonance will occur.,

However the natural oscillations of the gas which arise under the condition (3.2) do not cover the
entire spectrum of natural oscillations of practical interest for the case of an unstaggered lattice, The
natural oscillations examined include only oscillations in the transverse direction (in the direction of the
lattice front). In accordance with the familiar acoustical results for open resonators [10], we can also

expect natural oscillations of the gas in the longitudinal direction, since the interprofile channels are
essentially just such resonators.

In the first approximation the natural frequencies of such oscillations will be determined from the
condition [6]
k= — M)nm/2 (m=1,2,...) (3.4)
corresponding to the case of complete reflection of a small-perturbation plane wave from the open ends,

In reality the plane wave is not completely reflected from the open end, it rather interacts with the
surrounding space, including the neighboring interprofile channels. Therefore the corresponding eigen-
function will not be a simple plane wave, localized in a single channel, but rather some complex function
accounting for this interaction over the entire flow plane. Here the natural frequencies of the oscillations
will differ from the values defined by (3.4).
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We introduce the parameter om, accounting for the correction for the open end in (3.4), so that the
reduced natural frequency of the longitudinal oscillations of the gas is

by = (1 — M¥) wm (1 +ua,,)/2 (m=1,2,..) (3.5)

The values of the parameter am and also the eigenfunction of the sought oscillations can be found
with the aid of the solution of (3.1).

Let us examine the example of the calculation for m = 1, ¢ = 7, In this case the expressions for the
eigenfunctions (2.4), (2.5), (2.7) become ‘

[e]

oo
_ N ER T ) , 2n -1
¢1F = 2 an €xp [(jo 4 Ay, )z]sin (—%)—y— v Q= Z by exp [(jo — My,) (v — 2)] sin(—n—l—-hﬁg
n=g n=0
Pn = Z "% [ep 0XD A (+ — 2) + dpy XD (— Apy@)] cos n;:n d
m==1
o 1 o 2ntm \2 . = 1y, . 1 2n 4 1\2 J1/2
=g () = ] = [ (B e — ey — ]

Following the reduction method, (3.1) was truncated for the calculation to N = 30 equations. The
vanishing of the determinant of the truncated system for fixed values of M and h was examined as the
approximate condition for finding the parameter oj.

The results of the calculation of the parameter o4 as a function of the dimensionless spacing h for
M =0, 0,5 and 0,7 are shown in Fig, 2, Analyzing this relation, it is interesting to note that oy — 0 as
h — 0, From the physical viewpoint this result can be explained by the fact that with increase of the
channel length the fraction of the disturbed gas kinetic energy radiated from the open end decreases
relative to the energy of the oscillating gas within the channel and approaches zero in the limit for infinite
channe] length,

We present the calculated values of the first ten unknown coefficients an and c¢p, normed with respect
-toag for h=1and M= 0,7,

n= 0 1 2 3 4
ap= 1.0 0.1660 0.0761 0.0462 0.0320
—ep= —0.69— j 3.12 0.2480 0.0898 0.0489 0.0316

n= 5 6 7 8 9 10
a,=  0.0241 0.0191 0.0157 0.0132 0.0114 0.0101

ep= 0.0224 0.0168 0.0132 0.0107 0.0089 0.0075

These values agree to within the third place with the corresponding coefficients calculated from the
system truncated to 20 eguations, which indicates good convergence of the reduction method in this case,
However, judging by the decrease of the coefficients the convergence of the derivatives of the unknown
functions is poor.

This fact is illustrated by Fig. 3, which shows curves of the normal derivatives of the functions ¢,
(continuous curve) and @* (dashed) versus y on the line x = 0. We see from these curves that the normal
derivatives of the unknown functions to the left and right of the splicing line differ from one another by a
magnitude of the order of the error of their approximation by finite trigonometric series. (Splicing of the
functions ¢ and ¢{* themselves in the case in question is accomplished to within 3~4 significant figures.)
In accordance with the order of decrease of the coefficients ay and by, there is a marked singularity of the
derivatives of the unknown functions at the edges of the plate. Here these singularities appear at both
ends of the plates on the basis of the construction of the solution,

We note that apparently such solutions are physically realizable only for M = 0, In the flow with
M # 0 the solutions in the class with bounded derivatives at the trailing edges of the plate are of greatest
practical interest. In the general case these solutions must be sought with account for the vortex wakes,
and the corresponding eigenvalues are complex numbers,

The author wishes to thank G, Yu. Stepanov and R. A. Shipov for valuable comments in discussions
of the study.
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