
N A T U R A L  O S C I L L A T I O N S  OF GAS 

A L A T T I C E  OF F L A T  I ~ L A T E S  

V,  B.  K u r z i n  

F L O W I N G  P A S T  

The splicing method is used to solve the problem of natural oscil lat ions of a gas flowing past  a flat 
plate lat t ice.  In addition, the natural oscil lations of a gas in an infinite plane, simulating the natural  
oscil lat ions of a gas in an annular channel, a re  examined under the condition of spatial periodici ty.  

In teres t  in the study of this question was kindled by the resul ts  of several  studies of the oscillations 
of flat plate lat t ices in subsonic gas flow [1-4]. In these studies it was found that for definite combinations 
of the latt ice and approaching s t r eam pa ramete r s  the unsteady aerodynamic  charac te r i s t i cs  of the plates 
depend markedly  on these p a r a m e t e r s .  With r ega rd  to physical interpretat ion,  such phenomena have been 
explained as acoustical  resonance of the gas per turbat ions caused by vibrations of the profi les with the 
natural oscillations of the gas in the latt ice region in question. In this connection it has been noted that 
the aerodynamic  damping of the lat t ice vibrations is reduced significantly in the resonant  r eg imes .  

In [5] this fact was noted in a study of vibrations in axial c o m p r e s s o r s .  The present  paper presents  
for  the f i r s t  t ime relat ions which define the values of the natural frequencies of gas oscil lat ions in an 
annular channel in the c i rcumferent ia l  direction.  These same relat ions,  but in a different form and by 
different methods,  have been obtained in [6, 7]. 

1. We shall f i r s t  examine the problem of natural oscil lations of gas flow in an infinite plane. The 
per iodic  solutions of this problem will be a model of the natural oscillations of a gas in an annular channel. 
The problem reduces  mathematical ly  to finding the solution, bounded over the entire plane, of the equation 
for  the amplitude of the unsteady component of the flow velocity potential ~. In the x, y dimensionless 
Cartesian coordinate sys tem,  r e f e r r e d  to the charac te r i s t i c  length c, this equation has the form 

(i - -  M ~) ~ =- a~ _ 2k3: l j_~  x .+. k2q) = 0 Oxz --  
u (1.]) 

9' : (P (x, y) e j~, 11/I : ~ ,  k = ~c 
a a 

Here w is the frequency of the gas osci l lat ions,  U is the undisturbed gas flow veloci ty along the x 
axis, and a is the sound speed in the undisturbed flow. 

By rotat ion of the x, y axis through the angle fi, we obtain the new dimensionless coordinates ~, 

= x c o s ~ - - g s i n  ~, ~1 : x s i n ~  + g c o s ~  (1.2) 

In this coordinate sys tem (1.1) becomes 

- oq~ 0(p A~ _ M~cos2~ ~a~ _ M 2 s  in ~ ~-~- -  ~ 02~ M~s[n2~ ~o~cP 2 k M ] c o s ~ - ~ - - 2 k M ] s i n ~  ~ +k2e? = 0  (1.3) 

We seek the general  solution of (1.3) in the class of periodic functions in the direct ion ~? with period 
L,  equal to the length of the c i rcumference  of the corresponding annular channel, also r e f r e r e d  to c. Then 
the function ~v is representable  by the Four ie r  se r ies  

c o  

n (1.4) 
n = - - o o  
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and the par t icular  periodic solution of (1.3) can be represented  in the form 

qQ~ =exp ( ~  ~-] 2~n~/L)  (]~ 

Substituting (1.5) into (1.3), we obtain the charac te r i s t i c  equation for  determining Xn, whose solution 
has the form 

McosB r k 2~n ~ 
)~n ~ J~m___~ ~ ,  ~l~ = i ~ c-6~ ~ L -1- - - E -  M sin 

J 

(~ .6) 
~,2n - -  t - -  M 2 cos ~ ~ T M s i n  ~ - -  

Thus the general  solution of (1.3), sat isfying the per iodici ty  condition in the direct ion of the ~ axis, 
has the form 

DO 

exp--- L [a n exp (J~'ln + )~n) ~ + b~ exp (J~ln -- X2n) ~] (1.7) 
n ~ - - D O  

If the radicand in (1.6) for X2n is less  than or  equal to zero,  the corresponding t e rm of the ser ies  (3.7) 

(P, = exp [] (~.~ ~- 2:rn~l / L)] cos [~2~" (~ + 5)] ()~en = J~'2n') (7.8) 

where 5 is an a rb i t r a ry  number,  will be the eigenfunction of the problem in question. It sat isf ies (1.3) and 
is bounded over the entire plane. Such solutions of the Helmholtz equation for an infinite plane a re  p r e -  
sented, for example, in [8]. 

We isolate f rom the solution {1.8) the factor  exp (j~m~), charac ter iz ing  the t ranspor t  of the gas d i s -  
turbance by the flow in the ~ direction, setting ~0 n = exp(jXln~)~Vn*. Then the function r will be 
the superposit ion of two travel ing waves, propagating in directions symmet r i c  with respec t  to the ~ axis. 
In the l imiting case,  when X2n = 0, the function tn*exp(jcot) is a t ravel ing wave propagating only in the 
direct ion of the ~7 axis.  

We introduce the notations 

L = N h ,  n = n l N  -4- m ,  t~ = 2~tm / N (1.9) 
( m = 0 1  1 . . . . .  N - - l ;  n ~ 0 ,  ~ 1 ,  4 - 2  . . . .  ) 

where N is some natural number .  Then 

2nn __ 2nnl-~-~ (1o]0) 
L h 

and we can note that the condition X2n = 0 coincides with the condition for acoustic resonance of the natural 
oscil lat ions of a gas in an infinite plane with disturbances caused by a pulsing dipole chain [7], a r ranged  
along the ~ axis with the spacing h 

kh 
2:tni + t~ = ~ [Msin~_____ 1 / t - -  M2cos~] (hi=0, q-t . . . .  ) (1.11) 

F rom the physical viewpoint this means that the dipole chain, radiat ing dis turbances,  resonates  with 
those natural oscillations of the gas which do not contain waves approaching the ~ axis f rom infinity on the 
left  or  r ight.  

As was noted in [2-5], the condition (1.1 ]) also defines cer ta in  charac te r i s t i c s  of unsteady gas flow 
through a planar profile lat t ice.  In this case the pa rame te r  h is the dimensionless lat t ice pitch, r e f e r r ed  
to the profile semichord  c; the pa ramete r  fl is the lat t ice s tagger  angle. Like the pulsing dipole chain, the 
latt ice is a source  of disturbance of the gas and for  synchronous oscillations of its profi les with the same 
amplitudes and the constant phase shift p it excites the corresponding natural oscil lat ion mode in the infinite 
plane. In this case the interaction of the latt ice profi les  with the gas dec reases  sharply,  andthe aerodynamic 
damping of the profile oscil lations also diminishes.  In terming this phenomenon for flow past  lat t ices 
acoustic resonance,  we must  note its a rb i t r a r iness ,  since the natural oscil lations of the gas in the "lat t ice" 
region in the general  case do not coincide with the natural oscil lations in question. 

2. In the case of subsonic gas flow past  a latt ice of flat plates the eigenvalue problem consists  in 
finding the nontrivial solution of (1.3) with the condition of boundedness of the solution at infinity behind 
and ahead of the latt ice (Fig. 1) 

( ~  ~ for ]~I-~-,~ (2.]) 

and with the uniform condition of gas nonpenetration through the plates 
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Fig .  1 

OTlOy = 0 for y=nhcosB 
nhsinp<x<nhsin[t +2 (2.2) 

We consider  only those flows in which there  a re  no vor tex  wakes  behind the 
p la tes .  We shall  seek  these solutions with the aid of the spl ic ing method [9]. 
Following this method,  we divide the flow region into the regions  Dl* and D2* 
loca ted  r e spec t i ve ly  to the lef t  and r ight  of the la t t ice  and bounded by l ines 
connecting the leading and t ra i l ing  edges of the pla tes)  and the regions  Dn 
(between the pla tes  (Fig. 1)). In accordance  with the per iod ic  function concept 
(1.7), in the regions  DI* and D2* the mos t  general  express ion  for  the eigenfunctions,  
with account  for the subst i tut ion (1.11), has the f o r m  

N--1 aO 

= l ) . . . .  (]2=n -~ Xln~)[a~.,e 2 .-Jr- bln.,e ~ ]  (2.3) 

In the following it  will be shown that any unknown function in these regions is desc r ibed  by one of the 
t e r m s  of the sum over  m.  Moreover ,  it follows f r o m  the condition (2.1), and f rom the condition of the 
absence  of waves  coming f rom infinity, that  the coeff icients  a m n  1 a r e  ze ro  in the region D2* and the 
coeff icients  bmn 1 a r e  ze ro  in the region DI*. The re fo re  we take for  region DI* 

for region D2* 

(h* = exp(jD2-~) ~ anexp[<j)~,.n +)~n)~ + ]2gn-~]  ; 
n ~ - - o r  

(2.4) 

(2.5) 

In (2.4) and (2.5), and a lso  he rea f t e r ,  the subsc r ip t  I on nl in the constants  amnl ,  bran1 is  dropped.  

The functions (Pi* and (P2* and the i r  f i r s t  de r iva t ives  will be continuous in the regions  Dr* and D2* , 
except  for  poss ib ly  the values  ~ = sh and ~ = 2 sin fl + sh (s = 0, • 1, • 2 . . . .  ) on the i r  boundar ies  c o r r e s -  
ponding to the coordinates  of the prof i le  edges .  We know f rom s lender  wing theory that at these points the 
der iva t ive  of the veloci ty  potential  function may  have a s ingular i ty  of the ( r - r s ) - l / 2  type,  where  r s  is the 
coordinate  of one of the edges ofthe s - th  prof i le  and r is the r a d i u s - v e c t o r  of the va r i ab le  coordinate .  
However ,  in spi te  of this s ingular i ty  the coefficients  an '  and bn' of the s e r i e s  fo r  the der iva t ives  of the 
functions ml* and cP2*, analogous to the s e r i e s  of (2.4) and (2.5), tend to ze ro  as n ~ % namely ,  

h 

aJ I.,-<:>o = -~"I[ 1/~--~~ ~) 4-/('l)]exp(]2=n-~)d~=-~Jo(nh)+o(n-Z)-~O 
o 

Here  the t e r m  with the s ingular i ty  f r o m  the der iva t ives  of the functions ml*(0 , ~?), go2'(2 cos •, I7) 
is s epa ra t ed  in the fo rm Co/~-(l~-~).  Consequently,  the s e r i e s  for  the f i r s t  de r iva t ives  of the veloci ty  
potential  functions converge for  any value of ~ except  for  the coordinates  of the prof i le  edges .  

In the regions  D n the genera l  exp re s s ion  for  the eigenfunctions will be defined by the solution of 
mixed p rob lems  of the fo rm 

q~n =q)l* for ~ = 0, q)n = q~2* for ~ = 2 cos ~ (2.6) 

O(Pn/Oy = 0  for g = n h c o s ~ , y  = ( n +  t) hcos~ 

We shall seek  the functions ~n in the fo rm of an infinite s e r i e s  of solutions of the equation (1o]), each 
of which sa t i s f i es  the nonpenetra t ion condition. Consider ing that  the f i r s t  two conditions (2.6) for  the 
di f ferent  regions  differ  only in the fac tor  exp(jn#), the general  express ion  for  the function ~n can be 
wr i t t en  as follows: 

%, = e j(ax+n~') "~ [ CmeXm(X-~) + dine -~'~x] COS [z~m (h cos B Y ~ -  n)] 
~=o (2.7) 

t F/ ~ra \2 i'll- kM 
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We shall de te rmine  the constants  an, bn of the functions (2.4) and (2.5) 
~.3[:~_ and also  the constants  c m and d m of the function (2.7) in accordance  with the 

spl ic ing method f rom the condition of continuity of the unknown function and 
#2 

~ ~ / ~ g 7  its normal  der iva t ive  on the l ines  ~ = 0 and ~ = 2 cos fl, except  poss ib ly  the 
points cor responding  to the coordinates  of the prof i le  edges.  In so doing the 0/ 

'/Jr f i r s t  two conditions (2.6) for  the function (2.7) a r e  au tomat ica l ly  sa t i s f ied .  

g q g~ zz /o- We note that  it suff ices to spl ice  the functions (2.4) and (2.5) with the 
Fig.  2 function (2.7) only in the in terval  of a single s tep h. On the r ema in ing  segments  

of the l ines  ~ = 0 and } = 2 cos fl spl ic ing is accompl i shed  by v i r tue  of the 
per iodic i ty  condition. Since the express ions  (2.4) and (2.5) in the in terval  of a single s tep desc r ibe  an 
a r b i t r a r y  function of the sought solution, we can s ta te  that summat ion  over  the index m in (2.3) does not 
yield a m o r e  genera l  r ep re sen t a t i on  of the sought solution and can be dropped.  

Thus,  equating the functions (2~ and (2.5) and their  der iva t ives  in the ~ di rec t ion to the function 
(2.7) and i ts  der iva t ive  on the l ines  } = 0 and ~ = 2 cos fl r e spec t ive ly ,  we obtain four  re la t ions  which 
connect  the unknown constants .  

F o r  the sake of b rev i ty  we wr i te  out only the two of these  re la t ions  which sa t i s fy  the continuity 
conditions on the line ~ = 0: 

�9 

exp L ~  ~, an exp i2~ml [Cme xm(nsin~-~) + dine -xmnsin~] e iz~sin~ cos  ~ra~ 
h ---- h 

oo 03 

exp ~ ~, an (]X.~ + L~n) exp i2~n. { h __ ~ e i z n s i n ~  eos~[Cm(~m-~](:i) eXm(~sin$-2)~-dm(--~m-~]z)e -xm~sin~] (2.8) 

X c o s - ~  + -~-tg~ [cmeXm(nSin~-~) + dme~XmnSIn~]sin ~ }  

To find the unknown constants ,  we t r a n s f e r  f rom the s y s t e m  (2.8) to an infinite s y s t e m  of a lgebra ic  
equations.  To do this we multiply these re la t ions  on the lef t  and r ight  by the function exp [ -  j (27rn + ~) x 
~/h](n = 0, 1, 2 . . . .  ) and integrate  ove r  ~? f r o m  0 to h. Then we have 

an = ~ [crne-2Xm Anm + d~B~m] 
m~-O 

r - ( 2 . 9 )  

(]~,,,~+~r ~, {Cme-2X'n[()~m+ja)cos~ -(ura)'tgii]A -]-dm[(--~m+]a) COS ~ ' h ~ ] B n m }  '~=o- hO'~"r'~--~' "1 "~n '~  

Here  
0 n  t a 

0~,~' --~ ] (~h  s i n  ~ - -  2 ~ n  ~ i~) + ~mh sin ~ ,  O h m "  = ] (~h  s i n  ~ - -  2 ~ n  - -  I ~) - -  X.~h sin [~ 

The constants  a n a r e  eas i ly  excluded f r o m  each pa i r  of the s y s t e m  (2.9). P e r f o r m i n g  s i m i l a r  
opera t ions  for  the re la t ions  sa t is fying the continuity conditions on the line } = 2 cos fl, we obtain the s y s t e m  
of equations fo r  de te rmin ing  the unknown constants  Cm and dm in the f o r m  

oo 

+ d., [cos ~ (-- X., + 1~) 
co 

+ d., [cos [~ (-- ~,., + ]z) 

(nm)~ tg ~ (]~,m + ~2n)] Anra e-2xm 
hO nm' 

(nmp tg ~ -- ~r 1 Anm ~o,,m, (jZ,,,, 

hO nm" 
(n  = O, 4- i ,  4- 2, . ,) 

(2.10) 

Since (2.10) will be homogeneous,  exis tence of its nontr ivial  solution is poss ib le  only if the d e t e r -  
minant  composed of the coeff icients  of the unknown constants  equals z e ro .  Thus,  the p rob lem in question 
is reduced to the de terminat ion  of the eigenvalues of the infinite s y s t e m  of a lgebra ic  equations (2.10). 
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We note that the approximate values of the eigenvalues of (2.10) can be 
found with prespecif ied accuracy  f rom the truncated sys tem,  i.e., for its 
solution by the method of reduction.  However, even this problem presents  
considerable computational difficulty in the general  case .  As an i l lustrat ion 
we analyze the natural oscil lat ions of the gas in a lat t ice region using the ve ry  
simple example of flow through an unstaggered lat t ice.  

3. In the case of an unstaggered lattice (fl = 0) the infinite sys tem of 
algebraic  equations simplifies considerably.  In fact, for fl = 0 the coefficients 
Anm = Brim, 0nm' = 0nm' ,  a = ~m, and the sys tem of equations (2.10) takes 
the fo rm 

~ [ Cra (~'m - -  ~%2n) e-  2x m - -  dm (~%m 27 ~2n)] A n m  ~ O, 

m=O 

~,, [cm (~,rn + ~%2n) - -  dm ()~ra - -  ;L~n) e-2Xrn] A n m  = 0 
rn~o 

(n=O, +__1, +~2 ...) 

(n = 0,% z. . . )  (3.1) 

Hence Cm = dm and (2.10) thereby becomes 
co 

Cm [~'m A[- ~'2n - -  e-2Xm (~m - -  )~2n)] Anm ~ 0 
"o't~o 

We f i r s t  of all note that for  t~ = 0 the coefficients Anm = 0 if m ~ 2n. But since Xm = X2n for m = 2n, 
it follows f rom (3.1) that all the constants Cm and din, and therefore  an and bn as well, are  zero  in this 
case .  Thus, for g = 0 there is no nontrivial solution of (3.1)o It is fur ther  not difficult to note that if the 
quantity ~m vanishes for  some fixed value of m two columns of the sys tem determinant  coincide. 

Thus, the condition k m =  0 defines the combination of pa rame te r s  

k :  ~ra ] [ 1 - - M  ~ ( r e : t ,  2 . . . .  ) (3.2) 
h 

for  which the gas flowing over  the tmstaggered latt ice can pe r fo rm natural osci l lat ions.  The eigenfunctions 
of (1.1) corresponding to these oscillations have the form 

(p = exp (~(Ix) cos (m~g / h) (3.3) 

We note that (3.2) coincides with (1.11) for /3 = 0 and P = ~r, i.e., in this par t icu lar  case the natural 
oscil lat ions of the gas in the lat t ice region coincide with the natural oscil lat ions of the gas in an infinite 
plane.  

In this case of forced  vibrations of a latt ice with a frequency satisfying the condition (3.2), the 
vibrat ion period is a multiple of the t ime af ter  which a disturbance wave f rom some point of the profile 
reaches  the corresponding point of the neighboring profile and af ter  ref lect ion re turns  to the original 
point. If in this case the vibrations of the neighboring profi les are  per formed in phase opposition, then 
the dis turbances caused by each of the profi les  combine and acoust ic  resonance will occur .  

However the natural  oscil lat ions of the gas which ar ise  under the condition (3.2) do not cover the 
entire spec t rum of natural oscil lat ions of pract ical  in te res t  for  the case of an unstaggered lat t ice.  The 
natural oscil lations examined include only oscil lat ions in the t r ansve r se  direction (in the direct ion of the 
lat t ice front). In accordance with the famil iar  acoustical  resul ts  for  open resona to rs  [10], we can also 
expect  natural oscil lat ions of the gas in the longitudinal direction, since the interprofi le channels are  
essent ial ly  just such r e sona to r s .  

In the f i r s t  approximation the natural frequencies of such oscillations will be determined from the 
condition [61 

k = ( l  - -  M 2) ~ m / 2  ( m  = i ,  2 . . . .  ) ( 3 . 4 )  

corresponding to the case of complete ref lect ion of a smal l -per turba t ion  plane wave f rom the open ends. 

In real i ty  the plane wave is not completely ref lected f rom the open end, it r a ther  interacts  with the 
surrounding space,  including the neighboring interprofi le channels.  Therefore  the corresponding eigen- 
function will not be a simple plane wave, local ized in a single channel, but r a the r  some complex function 
accounting for this interaction over  the entire flow plane. Here the natural frequencies of the oscillations 
will differ f rom the values defined by (3.4). 
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We i n t r o d u c e  the p a r a m e t e r  a m ,  a c c o u n t i n g  f o r  the  c o r r e c t i o n  f o r  the open end in (3.4), so  tha t  the  
r e d u c e d  n a t u r a l  f r e q u e n c y  of  the l ong i t ud ina l  o s c i l l a t i o n s  of the  gas  is  

k m = (i -- M 2) ~rn (i -~- Ctm)/2 (m = i, 2 . . . .  ) (3.5) 

The  v a l u e s  of the  p a r a m e t e r  a m  and a l s o  the  e igen func t ion  of the sough t  o s c i l l a t i o n s  can  be found 
wi th  the a id  of the  s o l u t i o n  of (3.1). 

L e t  us  e x a m i n e  the e x a m p l e  of the c a l c u l a t i o n  fo r  m = 1, p = ~ro In th i s  c a s e  the e x p r e s s i o n s  f o r  the 
e igen func t ions  (2.4), (2.5), ( 2 . 7 ) b e c o m e  

c o  Co 

r ~ ~ ,  an exp [(/b ~ )~2n)x]sin (2n ~- i) ~y h (P~* = ~ bn exp [(/~ --  )~2n) (x --  2)] sin (2n Jc i) ~y 
h 

n ~ 0  n ~ 0  
c~ 

2gray 
~Pn= ~ eJ~X[CmeXp~'m(X--2) 2f-dmexp(--~*mX)]c~ h 

)~m-- i 2~m s __ k21% I - - M  ~ I(.--~--- ) (t M~)-- ,' ~'2n: 1 - ~ [ ( ~ - - ~ ) 2 ~ (  t - - M 2 ) - - k 2 J  1/2 

F o l l o w i n g  the r e d u c t i o n  me thod ,  (3.1) was  t r u n c a t e d  fo r  the  c a l c u l a t i o n  to N = 30 e q u a t i o n s .  The  
v a n i s h i n g  of  the  d e t e r m i n a n t  of the  t r u n c a t e d  s y s t e m  f o r  f i xed  v a l u e s  of M and  h was  e x a m i n e d  a s  the  
a p p r o x i m a t e  cond i t ion  for  f ind ing  the p a r a m e t e r  ~ l .  

The  r e s u l t s  of the  c a l c u l a t i o n  of the  p a r a m e t e r  ~ l  a s  a func t ion  of  the d i m e n s i o n l e s s  s p a c i n g  h f o r  
M = 0, 0.5 and 0.7 a r e  shown in F i g .  2. A n a l y z i n g  th i s  r e l a t i o n ,  i t  i s  i n t e r e s t i n g  to  note  tha t  ~ l  --* 0 as  
h ~ 0. F r o m  the p h y s i c a l  v i e w p o i n t  t h i s  r e s u l t  c an  be  e x p l a i n e d  by  the f ac t  tha t  wi th  i n c r e a s e  of the 
channel  l eng th  the  f r a c t i o n  of  the  d i s t u r b e d  gas  k i n e t i c  e n e r g y  r a d i a t e d  f r o m  the open end d e c r e a s e s  
r e l a t i v e  to the  e n e r g y  of the  o s c i l l a t i n g  gas  wi th in  the  channe l  and  a p p r o a c h e s  z e r o  in the  l i m i t  f o r  in f in i t e  
channel  l eng th .  

We p r e s e n t  the  c a l c u l a t e d  v a l u e s  of the  f i r s t  t e n  unknown c o e f f i c i e n t s  an  and cn,  n o r m e d  wi th  r e s p e c t  
t o a  0 f o r h =  l a n d M =  0.7. 

n =  O i 2 3 4 
a n =  1.0 0.1660 0.076i 0.0462 0.0320 

- - c n ~  --0.69-- ] 3.t2 0 .2480 0.0898 0.0489 0.0316 
n~--- 5 6 7 8 9 i0 

a n ~ 0.0241 0.0t91 0.0157 0.0i32 0.01~4 0.0i01 
cn ~ 0.0224  0.0i68 0.0i32 0.Ol07 0.0089 0.0075 

T h e s e  v a l u e s  a g r e e  to wi th in  the  t h i r d  p l a c e  wi th  the c o r r e s p o n d i n g  c o e f f i c i e n t s  c a l c u l a t e d  f r o m  the 
s y s t e m  t r u n c a t e d  to 20 equa t ions ,  wh ich  i n d i c a t e s  good c o n v e r g e n c e  of the r e d u c t i o n  m e t h o d  in th i s  c a s e .  
H o w e v e r ,  judg ing  b y  the  d e c r e a s e  of the  c o e f f i c i e n t s  the  c o n v e r g e n c e  of  the  d e r i v a t i v e s  of the  unknown 
func t ions  i s  p o o r .  

Th i s  f ac t  i s  i l l u s t r a t e d  by  F i g .  3, wh ich  shows  c u r v e s  of the  n o r m a l  d e r i v a t i v e s  of the  func t ions  cP 0 
(cont inuous  c u r v e )  and r (dashed)  v e r s u s  y on the  l i ne  x = 0. We s e e  f r o m  t h e s e  c u r v e s  tha t  the  n o r m a l  
d e r i v a t i v e s  of the unknown func t ions  to the  l e f t  and  r i g h t  of the  s p l i c i n g  l i ne  d i f f e r  f r o m  one a n o t h e r  by  a 
magn i tude  of the  o r d e r  of the e r r o r  of  t h e i r  a p p r o x i m a t i o n  by f in i te  t r i g o n o m e t r i c  s e r i e s .  (Spl ic ing of the 
func t ions  ~P0 and ~l*  t h e m s e l v e s  in  the c a s e  in q u e s t i o n  i s  a c c o m p l i s h e d  to w i th in  3 -4  s i g n i f i c a n t  f i g u r e s . )  
In a c c o r d a n c e  wi th  the  o r d e r  of d e c r e a s e  of the  c o e f f i c i e n t s  a n and bn,  t h e r e  is  a m a r k e d  s i n g u l a r i t y  of the  
d e r i v a t i v e s  of the unknown func t ions  a t  the  edges  of the  p l a t e .  H e r e  t h e s e  s i n g u l a r i t i e s  a p p e a r  a t  bo th  
ends  of the  p l a t e s  on the  b a s i s  of the  c o n s t r u c t i o n  of the  s o l u t i o n .  

We note  tha t  a p p a r e n t l y  such  s o l u t i o n s  a r e  p h y s i c a l l y  r e a l i z a b l e  on ly  fo r  M = 0. In  the  f low wi th  
M r 0 the  s o l u t i o n s  in the  c l a s s  wi th  bounded  d e r i v a t i v e s  a t  the  t r a i l i n g  e d g e s  of the  p l a t e  a r e  of g r e a t e s t  
p r a c t i c a l  i n t e r e s t .  In the g e n e r a l  c a s e  t h e s e  s o l u t i o n s  m u s t  be  sought  wi th  a c c oun t  f o r  the v o r t e x  w a k e s ,  
and  the c o r r e s p o n d i n g  e i g e n v a l u e s  a r e  c o m p l e x  n u m b e r s .  

The  au tho r  w i s h e s  to thank G.  Yu. S tepanov  and R .  A .  Shipov fo r  v a l u a b l e  c o m m e n t s  in d i s c u s s i o n s  
of  the s t u d y .  
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